Electron density learning of non-covalent systems
نویسندگان
چکیده
منابع مشابه
Unraveling non-covalent interactions within flexible biomolecules: from electron density topology to gas phase spectroscopy.
The NCI (Non-Covalent Interactions) method, a recently-developed theoretical strategy to visualize weak non-covalent interactions from the topological analysis of the electron density and of its reduced gradient, is applied in the present paper to document intra- and inter-molecular interactions in flexible molecules and systems of biological interest in combination with IR spectroscopy. We fir...
متن کاملNumerical Study of Non - Equilibrium Air Dissociation For Calculation of Electron Density in Hypersonic Flow
متن کامل
Electron transport in DNA initiated by diaminonaphthalene donors alternatively bound by non-covalent and covalent association.
Covalent conjugation is typically used to fix a potential charge donor to a chosen site for studying either hole or excess electron transport in duplex DNA. A model system based on oligonucleotides containing an abasic site and (Br)dU was previously developed to provide a rapid method of screening new donors without the need of synthetic chemistry. While this strategy is effective for discoveri...
متن کاملDFT Studies and Topological Analyses of Electron Density on Acetophenone and Propiophenone Thiosemicarbazone Derivatives as Covalent Inhibitors of Falcipain-2, a Major Plasmodium Falciparum Cysteine Protease
Thiosemicarbazones (TSCs) possess significant antimalarial properties believed to be linked to the inhibition of major cysteine proteases, such as falcipain-2, in Plasmodium falciparum. However, the binding modes of TSCs to the active site of these enzymes are not clear. As a result of this, the nature of the bonding interactions between the active site of falcipain-2 and different derivatives ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chemical Science
سال: 2019
ISSN: 2041-6520,2041-6539
DOI: 10.1039/c9sc02696g